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Abstract. We study the one-dimensional Holstein model of spinless fermions interacting with dispersion-
less phonons by using a recently developed projector-based renormalization method (PRM). At half-filling
the system shows a metal-insulator transition to a Peierls distorted state at a critical electron-phonon
coupling where both phases are described within the same theoretical framework. The transition is accom-
panied by a phonon softening at the Brillouin zone boundary and a gap in the electronic spectrum. For
different filling, the phonon softening appears away from the Brillouin zone boundary and thus reflects a
different type of broken symmetry state.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.30.+h Metal-insulator transitions
and other electronic transitions

1 Introduction

Systems with strong electron-phonon (EP) interactions
have received considerable attention in the last few years,
motivated by new findings which suggest a crucial role
of the EP coupling in materials with strong electronic
correlations. Examples are high-temperature supercon-
ductors [1], colossal magnetoresistive manganites [2], or
metallic alkaline-doped C60-based compounds [3]. Fur-
thermore, in many quasi one-dimensional materials, such
as MX chains, conjugated polymers or organic transfer
complexes [4], the kinetic energy of the electrons strongly
competes with the EP interaction which tends to estab-
lish, e.g., charge-density wave structures.

The so-called spinless Holstein model,

H = −t
∑

〈i,j〉
(c†i cj + h.c.) + ω0

∑

i

b†i bi

+ g
∑

i

(b†i + bi)ni, (1)

is perhaps the simplest realization of a strongly coupled
EP system. It describes the local interaction g at a given
lattice site i between the density ni = c†ici of electrons
and dispersion-less phonons with frequency ω0. Here, the
c†i (b†i ) are fermionic (bosonic) creation operators of elec-
trons (phonons), and 〈i, j〉 denotes the summation over all
neighboring lattice sites i and j.

a e-mail: huebsch@pks.mpg.de

In the past, a large number of different analytical and
numerical methods have been applied to the Holstein mo-
del (1). Strong-coupling expansions [5], variational [6] and
renormalization group [7,8] approaches, as well as Monte
Carlo [5,9] simulations were used to investigate mainly
ground-state properties. More recently, exact diagonaliza-
tion [10] (ED) and density matrix renormalization group
(DMRG) [11–13] techniques, and dynamical mean-field
theory (DMFT) in conjunction with a numerical renor-
malization group approach [14] were applied. However,
most of these approaches are restricted in their applica-
tions, e.g., ED techniques can only handle very small sys-
tem sizes, DMRG methods require one-dimensional sys-
tems, and the DMFT exploits the limit of infinite spatial
dimensions. Furthermore, the phononic part of the Hilbert
space is infinite even for finite systems so that all numer-
ical approaches require truncation schemes to limit the
number of bosonic degrees of freedom, or a numerically
expensive systematic reduction of the Hilbert space in the
spirit of the DMRG method [15] has to be employed. For
these reasons, there is still a clear need of reliable theo-
retical methods to tackle strongly coupled EP systems in
terms of minimal theoretical models. The Holstein model
of spinless fermions (1) shows at half-filling a quantum-
phase transition from a metallic to an insulating state
where both the one-dimensional case and the limit of in-
finite dimensions have been studied [5,11,14].

Alternative analytical approaches to interacting
many-particle systems are offered by methods based
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on functional renormalization like the flow equation
method [16], the similarity transformation [17], or the
projector-based renormalization method (PRM) [18]. So
far, these methods have been successfully applied to
electron-phonon systems with the aim to study the ef-
fective electron-electron interaction [19] or superconduc-
tivity [20]. However, the quantum-phase transition in the
Holstein model has not yet been studied by this kind of
approach.

Recently, we applied the projector-based renormaliza-
tion method (PRM) [18] to the spinless Holstein model (1)
at half-filling [21]. This analytical approach does not suf-
fer from the truncation of the phononic Hilbert space so
that all bosonic degrees of freedom are taken into account.
Furthermore, the PRM treatment provides both fermionic
and bosonic quasi-particle energies which are not directly
accessible with other methods. However, the PRM ap-
proach of reference [21] was restricted to the metallic
phase.

Here, we extend our recent work [21] on the one-dimen-
sional spinless Holstein model (1) where the scope of this
paper is twofold: Firstly, we demonstrate that the PRM
approach of reference [21] is not restricted to the half-
filled case, and that the phonon dispersion relation close
to the critical value of the EP coupling reflects the type
of the broken symmetry of the insulating phase. Secondly,
we derive modified renormalization equations for the half-
filled case that enable a dimerization of the system. Thus,
we find an uniform description for the metallic as well as
for the insulating phase of the spinless Holstein model (1)
at half-filling. We determine the critical coupling gc for
the metal insulator transition where a careful finite-size
scaling is performed. Furthermore, a phonon softening
is found for EP couplings close to the critical value gc

which can be understood as a precursor effect of the phase
transition.

This paper is organized as follows. In the next section
we briefly describe the basic idea of our recently devel-
oped PRM approach [18], and discuss metallic solutions
of the renormalization equations for different fillings of the
electronic band. In particular, we show that the phonon
softening close to the critical value gc of the metal insu-
lator transition reflects the type of the broken symmetry
of the insulating phase. In Section 3, we extend the PRM
approach of reference [21] to derive an uniform descrip-
tion for the metallic as well as for the insulating phase
of the spinless Holstein model (1) at half-filling. Further-
more, in Section 4, the critical coupling gc for the metal
insulator transition is determined, and electronic as well
as phononic quasi-particle energies are presented. Finally,
we summarize in Section 5.

2 Methodology and metallic solutions

In the PRM approach [18], the final effective Hamilto-
nian H̃ = limλ→0 Hλ is obtained by a sequence of unitary
transformations,

H(λ−∆λ) = eXλ,∆λ Hλ e−Xλ,∆λ , (2)

by which transitions between eigenstates of the unper-
turbed part H0 of the Hamiltonian caused by the inter-
action H1 are eliminated in steps. The respective tran-
sition energies are used as renormalization parameter λ.
The generator Xλ,∆λ of the unitary transformation has to
be adjusted in such a way so that H(λ−∆λ) does only con-
tains excitations with energies smaller or equal (λ− ∆λ).
Interaction with energies larger than (λ − ∆λ) are used
up to renormalize the parameters of the effective Hamil-
tonian. Thus, difference equations for the λ dependence of
the parameters of the Hamiltonian can be derived which
we call renormalization equations.

In reference [21] we have made the following ansatz

H0,λ =
∑

k

εk,λc†kck +
∑

q

ωq,λb†qbq + Eλ, (3)

H1,λ =
1√
N

∑

k,q

gk,q,λ

(
b†qc

†
kck+q + bqc

†
k+qck

)
(4)

for the renormalized Hamiltonian Hλ = H0,λ +H1,λ after
all excitations with energies larger than λ have been elim-
inated. In the next step, all excitations within the energy
shell between (λ − ∆λ) and λ have been removed where

Xλ,∆λ =
1√
N

∑

k,q

Bk,q,λ,∆λ

(
b†qc

†
kck+q − bqc

†
k+qck

)

has been used as generator of the unitary transforma-
tion (2). The coefficients Bk,q,λ,∆λ have to be fixed in such
a way so that only excitations with energies smaller than
(λ − ∆λ) contribute to H(λ−∆λ).

Evaluating equation (2), operator terms that contain
four fermionic and bosonic one-particle operators appear.
However, to restrict the renormalization scheme to the
operators of the renormalization ansatz according equa-
tions (3) and (4) we have to perform a factorization
approximation,

c†kckc†k−qck−q ≈ c†kck〈c†k−qck−q〉 + 〈c†kck〉c†k−qck−q

−〈c†kck〉〈c†k−qck−q〉,

b†qbqc
†
kck ≈ b†qbq〈c†kck〉 + 〈b†qbq〉c†kck − 〈b†qbq〉〈c†kck〉.

Thus, the renormalization equations for εk,λ, ωq,λ, Eλ, and
gk,q,λ, that are obtained by comparing the result of the
transformation (2) with equations (3) and (4), depend on
unknown expectation values 〈c†kck〉 and 〈b†qbq〉. These ex-
pectation values are best defined with Hλ since the renor-
malization step is done from Hλ to H(λ−∆λ). Note that
for simplicity in reference [21] the expectation values were
evaluated with the unperturbed Hamiltonian H0,λ. In con-
trast, we now neglect the λ dependence of the expectation
values and perform the factorization approximation with
the full Hamiltonian H in order to take into account im-
portant interaction effects. (A general discussion of the
factorization approximation in the PRM can be found in
Ref. [22].)
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For the evaluation of the expectation values with the
full Hamiltonian H we have to apply the unitary transfor-
mations also on operators to exploit 〈A〉 = 〈Aλ〉Hλ

. The
transformed operator Aλ is obtained by the sequence (2)
of unitary transformations, A(λ−∆λ) = eXλ,∆λAλe−Xλ,∆λ .
We derive renormalization equations for the fermionic
and bosonic one-particle operators, c†k and b†q, where the
same approximations are used as for the Hamiltonian. In
this way, equations for the needed expectation values are
obtained.

The resulting set of renormalization equations has to
be solved self-consistently. The explicit (numerical) eval-
uation starts from the cutoff λ = Λ of the original model
and proceeds down to λ = 0. Note that the case λ = 0
with self-consistently determined expectation values pro-
vides the effectively free model H̃ = limλ→0 H0,λ,

H̃ =
∑

k

ε̃kc†kck +
∑

q

ω̃qb
†
qbq + Ẽ, (5)

we are interested in. Here, we have introduced the renor-
malized dispersion relations ε̃k = limλ→0 εk,λ and ω̃q =
limλ→0 ωq,λ, and the energy shift Ẽ = limλ→0 Eλ.

Here, one might wonder why it is possible to map the
Holstein model of spinless fermions onto an effectively free
system as described above. Of course, before the actual
calculations can be started a guess of the form of the final
renormalized Hamiltonian H̃ is needed that can be moti-
vated by the operator terms generated due to the renor-
malization procedure. Furthermore, the obtained results
are a very powerful test of the inital guess: unphysical find-
ings are clear signatures of an insufficient renormalization
ansatz. As an example, it will turn out that non-physical
negative phonon energies ω̃q are obtained if the electron-
phonon coupling g exceeds a critical value. Therefore, we
shall later extend ansatz (3), (4) to study both the metallic
and the insulating phase of model (1).

Furthermore, it is important to note that the employed
factorization approximation is directly related to the re-
normalization ansatz: only operator structures that are
contained in the renormalization ansatz Hλ can be taken
into account without any approximation. All other op-
erators appearing due to the renormalization procedure
have to be traced back to those of Hλ. Here, as already
mentioned, we use a factorization approximation for this
purpose. Due to the complexity of the renormalization
equations it is extremely difficult to estimate the effect
of the mentioned factorization approximation on the re-
sults. However, in this paper we present two complemen-
tary renormalization schemes so that the comparison of
the two approaches will provide some information about
the effects of the employed factorization approximations
(see the discussion in Sect. 4).

In the following we concentrate on the so-called adia-
batic case ω0 � t, where we have chosen ω0/t = 0.1. In
panel (a) of Figure 1, the bosonic dispersion relation of
an one-dimensional chain at half-filling is shown for dif-
ferent EP couplings g. Due to the coupling between the
phononic and electronic degrees of freedom, ω̃q gains some
dispersion. In particular, a phonon softening appears at

the Brillouin-zone boundary if g is only slightly smaller
than the critical value gc ≈ 0.31t of the EP coupling. How-
ever, if the EP coupling g exceeds the critical value gc we
obtain non-physical negative phonon energies. Therefore,
the solutions of the renormalization equations from refer-
ence [21] can only describe the metallic phase and break
down at the phase transition.

As already mentioned above, in the present calcula-
tion an improved scheme for the evaluation of the ex-
pectation values has been used. However, the same crit-
ical value gc ≈ 0.31t for the metal-insulator transition
was also found in reference [21] where all expectation val-
ues had been evaluated using the unperturbed part H0,λ

of the λ dependent Hamiltonian and not using the full
Hamiltonian H.

Note that the critical EP coupling gc ≈ 0.31t ob-
tained from the vanishing phonon phonon mode at the
Brillouin-zone boundary is significantly larger than the
DMRG value of gc ≈ 0.28t [11,13]. This difference can
be understood as follows: our renormalization scheme as
presented in this section starts from a description partic-
ularly suitable for the metallic phase as represented by
the final Hamiltonian H̃. As discussed above, a factoriza-
tion approximation has been employed so that fluctua-
tions are suppressed. However, these additional fluctua-
tions would enhance the phonon softening and, therefore,
tend to destabilize the metallic phase. Thus, the realistic
critical value gc of the electron-phonon coupling is smaller
than the result we have obtained by the PRM approach as
presented above. Note that the situation will change for
the modified renormalization scheme of Section 3.

Even though only the case of half-filling has been dis-
cussed in reference [21], the same PRM approach can also
be applied to different fillings without any modifications.
Panel (b) of Figure 1 shows bosonic dispersion relations
for an one-dimensional chain at filling 1/3 for different
EP couplings. Similar to the half-filled case, we obtain a
phonon softening for EP couplings g close to a critical
value of gc ≈ 0.5t, and negative phonon energies are ob-
served for g > gc. However, in contrast to the half-filled
case, the phonon softening appears at 2kF = 2π/3 and
not at the Brillouin-zone boundary (where kF denotes the
Fermi momentum). Consequently, as expected for a one-
dimensional fermionic system, the broken symmetry of the
insulating phase strongly depends on the filling of the elec-
tronic band.

Figure 2 shows the critical values gc of the EP coupling
as function of the electronic band filling. Here, two aspects
of the results are important to be noticed: (i) the critical
value gc has a minimum at half-filling which is connected
with the highest stability of the insulating phase; (ii) the
form of the curve in Figure 2 reflects the particle-hole
symmetry of the model (1).

Above we have argued that the phonon softening is a
precursor effect of the metal-insulation transition in the
Holstein model. However, in the anti-adiabatic limit of
the model where t � ω0 holds we do obtain the oppo-
site behavior: a phonon stiffening occurs in the metal-
lic phase if we increase the electron-phonon coupling g.
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Fig. 1. (Color online) Bosonic quasi-particle energies of a chain
with 500 lattice sites for different EP couplings g obtained from
the renormalization equations without a symmetry breaking
term. Note the unphysical jumps at small q values which are
due to the factorization approximation of higher order renor-
malization processes. For details see the discussion in refer-
ence [21].
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Fig. 2. Critical value gc of the EP coupling as a function of
the electronic band filling for a chain with 500 lattice sites.
The value gc ≈ 0.31t for the half-filled case agrees perfectly
with the result of reference [21] where a simpler scheme for the
evaluation of the expectation values has been used.

This finding corresponds to the anti-adiabatic limit of
spin systems where also no phonon softening occurs for
fast phonons [23]. Unfortunately, in this work the metal-
insulator transition itself can not be studied in the anti-
adiabatic limit because the presented PRM approach has
no stable solutions for t � g.

3 Uniform description of metallic
and insulating phases at half-filling

In this section we want to extend our PRM approach to
find an uniform description for the metallic as well as for
the insulating phase of the spinless Holstein model (1).
In the following, we concentrate on the case of half-filling
because the broken symmetry of the insulating phase de-
pends strongly on the filling of the electronic band as dis-
cussed above.

We have already mentioned that the PRM approach
as discussed in Section 2 breaks down for strong EP cou-
plings. In this case a long-range charge density wave order
occurs, and electrons and ions are shifted from their sym-
metric positions. To describe such a state with a broken
symmetry in the framework of the PRM the ansatz for
Hλ must contain suited order parameters [20]. In the case
of the half-filled Holstein model, one has to take into ac-
count that the unit cell of the system is doubled in the
case of a dimerized insulating ground-state. Therefore, we
consider the Hamiltonian in a reduced Brillouin zone and
introduce appropriate symmetry breaking terms in our
renormalization ansatz. Thus, the renormalized Hamilto-
nian Hλ = H0,λ + H1,λ reads

H0,λ =
∑

k>0,α

εα,k,λc†α,kcα,k +
∑

q>0,γ

ωγ,q,λb†γ,qbγ,q + Eλ

+
∑

k

∆c
k,λ

(
c†0,kc1,k + h.c.

)
+
√

N∆b
λ

(
b†1,Q + h.c.

)
(6)

H1,λ =
1√
N

∑

k,q>0
α,β,γ

gα,β,γ
k,q,λ

{
δ(b†γ,q)δ(c

†
α,kcβ,k+q) + h.c.

}

(7)
after all excitations with energies larger than λ have been
integrated out. Here, due to the usage of the reduced Bril-
louin zone, both the fermionic and bosonic one-particle
operators as well as the model parameters have additional
band indices, α, β, γ = 0, 1. Furthermore, the definitions
δA = A − 〈A〉 and Q = π/a are used in equation (7).
Note, however, that equation (6) is restricted to the one-
dimensional case at half-filling but could be easily ex-
tended: for higher dimensions the term with the order
parameter ∆b

λ has to take into account all Q values of
the Brillouin zone boundary. To describe the insulating
phase away from half-filling one has to adjust the order
parameters because the broken symmetry type strongly
depends on the filling as discussed above.

To derive the renormalization equations we consider
the renormalization step from λ to (λ − ∆λ). At first we
perform a rotation in the fermionic subspace and a trans-
lation to new ionic equilibrium positions so that H0,λ is
diagonalized,

H0,λ =
∑

k>0

∑

α

εC
α,k,λC†

α,k,λCα,k,λ

+
∑

q>0

∑

γ

ωB
γ,q,λB†

γ,q,λBγ,q,λ − Eλ. (8)
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Next we rewrite H1,λ in terms of the new fermionic and
bosonic creation and annihilation operators, C

(†)
α,k,λ and

B
(†)
γ,q,λ which we have introduced to diagonalize H0,λ. Fi-

nally, we have to evaluate (2) to derive the renormalization
equations for the parameters of Hλ. Here the ansatz

Xλ,∆λ =
1√
N

∑

k,q

∑

α,β,γ

Aα,β,γ
k,q,λ,∆λ

×
{
δB†

γ,qδ(C
†
k,λCβ,k+q,λ) − h.c.

}

is used for the generator of the unitary transformation (2).
The coefficients Aα,β,γ

k,q,λ,∆λ have to be fixed in such a way so
that only excitations with energies smaller than (λ−∆λ)
contribute to H1,(λ−∆λ). The renormalization equations
for the parameters εk,λ, ∆c

k,λ, ωγ,q,λ, ∆b
λ, and gα,β,γ

k,q,λ are
obtained by comparison with (6), (7) after the creation
and annihilation operators C

(†)
α,k,λ, B

(†)
γ,q,λ have been trans-

formed back to the original operators c
(†)
α,k, b

(†)
γ,q. The actual

calculations are done in close analogy to reference [21].
As already discussed in Section 2, in order to eval-

uate equation (2), an additional factorization approxi-
mation must be employed where only operators of the
structure of those of (6) and (7) are kept. At this point
it is important to notice that this factorization approx-
imation is performed in the framework of the reduced
Brillouin zone. Therefore, in comparison to the PRM
scheme of Section 2, additional terms occur for non-zero
order parameters ∆c

k,λ and ∆b
λ. Due to the factoriza-

tion approximation, the final renormalization equations
still depend on unknown expectation values. As already
discussed in Section 2, these expectation values were eval-
uated with the full Hamiltonian H in order to take into
account important interaction effects. Therefore, we again
must apply the sequence (2) of unitary transformations
to operators, A(λ−∆λ) = eXλ,∆λAλe−Xλ,∆λ to exploit
〈A〉 = 〈Aλ〉Hλ

. As in Section 2, this procedure is per-
formed for the fermionic and bosonic one-particle oper-
ators, c†α,k and b†γ,q, where the same approximations are
used as for the Hamiltonian. Thus, we easily obtain equa-
tions for the needed expectation values. The resulting set
of renormalization equations is solved numerically where
the equations for the expectation values are taken into
account due to a self-consistency loop.

The case λ = 0 with self-consistently determined ex-
pectation values provides again an effectively free model
H̃ = limλ→0 Hλ = limλ→0 H0,λ which reads

H̃ =
∑

k>0,α

ε̃α,kc†α,kcα,k +
∑

k>0

∆̃c
k

(
c†0,kc1,k + h.c.

)

+
∑

q>0,γ

ω̃γ,qb
†
γ,qbγ,q +

√
N∆̃b

(
b†1,Q + b1,Q

)
− Ẽ (9)

where ε̃α,k = limλ→0 εα,k,λ, ∆̃c
k = limλ→0 ∆c

k,λ, ω̃γ,q =
limλ→0 ωγ,q,λ, and ∆̃b = limλ→0 ∆b

λ. Note that all excita-
tions from H1,λ were used up to renormalize the param-
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Fig. 3. Gap in the electronic excitation spectrum for the in-
finite chain. The solid line is a Kosterlitz-Thouless fit of the

form ∆̃/t = 15.240√
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]
. The in-

set shows the finite-size scaling for g values of 0.26t (circles),
0.266t (squares), and 0.27t (diamonds).

eters of H̃0. The expectation values are also calculated
in the limit λ → 0 and can be easily determined from
〈A〉H = 〈Aλ〉Hλ

= 〈(limλ→0 Aλ)〉H̃ because H̃ is a free
model.

Before we present results in Section 4, we want to com-
pare the two different renormalization schemes discussed
above in more detail. As already mentioned, the approach
of Section 2 is based on a renormalization ansatz in par-
ticular suitable for the metallic phase of the system. In
contrast, the renormalization scheme as discussed in the
present section starts from a dimerized system so that this
approach provides a description of the system particularly
adapted to the insulating phase. Thus, both renormaliza-
tion schemes are complementary approaches, and opposite
fluctuations are suppressed due to the employed factor-
ization approximations: the suppressed fluctuations of the
renormalization scheme of Section 2 destabilize the metal-
lic phase. In contrast, it will be shown that the neglected
fluctuations of the approach of Section 3 favor the same
phase.

On the other hand, the two renormalization schemes
are not only complementary in their starting points but
also closely related: the renormalization scheme as dis-
cussed in the present section exactly matches the approach
of Section 2 if the gap parameters ∆c

k,λ and ∆b
λ vanish for

all λ values. Thus, finite excitation gaps are only obtained
from the renormalization scheme of this section if the in-
sulating (i.e. gapped) phase has a lower free energy than
the metallic solution as discussed in Section 2. Note that
in actual calculations the PRM approach of this section al-
ways leads to a free energy smaller than the one obtained
from the scheme discussed in Section 2.
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4 Results

In the following, we first show that the PRM treatment
can be used to investigate the Peierls transition of the one-
dimensional spinless Holstein model (1) at half-filling. In
particular, our analytical approach provides a theoretical
description for the metallic as well as for the insulating
phase, and we compare our results with DMRG calcula-
tions [11,13].

In order to determine gc we perform a careful finite-size
scaling as shown for some g values in the inset of Figure 3
where a linear regression is applied to extrapolate our re-
sults to infinite system size. Note, however, that the finite
size scaling of our PRM approach is affected by two differ-
ent effects: long-range fluctuations are suppressed by the
finite cluster size as well as by the used factorization ap-
proximation so that a rather unusual dependence on the
system size is found. In Figure 3 the electronic excitation
gap ∆̃ for infinite system size, as found from the opening
of a gap in the quasi-particle energy ε̃k (see text below),
is plotted as function of the EP coupling g. A closer in-
spection of the data shows that an insulating phase with
a finite excitation gap is obtained for g values larger than
the critical EP coupling gc ≈ 0.24t. A comparison with
the critical value gc ≈ 0.28t obtained from DMRG calcu-
lations [11,13] shows that the critical values from the PRM
approach of Section 3 might be somewhat too small.

In particular, the critical coupling gc ≈ 0.24t obtained
from the opening of the gap in ε̃k is significantly smaller
than the gc value of ≈0.31t which was found from the van-
ishing of the phonon mode at the Brillouin zone boundary
in the metallic solution of Section 2. Instead, one would ex-
pect that both the gap in ε̃k and the vanishing of ω̃q should
occur at the same gc value. This inconsistency can be
understood from the different nature of the factorization
approximations employed in the two PRM approaches pre-
sented here: as discussed above, the due to the factoriza-
tion approximation suppressed fluctuations tend to desta-
bilize the suggested phase of the renormalization ansatz.
Therefore, the neglected fluctuations of the two presented
PRM approaches have opposite characters: the stability
of the metallic phase is overestimated by the scheme of
Section 2 whereas the approach of Section 3 favors the
insulating phase, and the different values of the critical
coupling exactly reflect the different nature of the two
PRM approaches. Thus, both approaches (and both ways
to determine gc) would be consistent with each other if ad-
ditional fluctuation could be taken into account, and one
would expect a common result for gc between 0.24t and
0.31t. This would be in good agreement with the DMRG
value of gc ≈ 0.28t [11,13].

Another way to determine gc might be given by the as-
sumption that a marginal relevant interaction in a renor-
malization group treatment causes the phase transition
in the Holstein model. Corresponding to reference [24],
the gap ∆̃ should in this case grow for g > gc as
exp[−a/g− gc], where a is some numerical constant. Such
a function fits our data very well, and a critical value
of gc = 0.166t would result in this way which seems
to be questionable small. On the other hand, we could

also assume that the metal-insulator transition might be
of Kosterlitz-Thouless type [25] as found for the anti-
adiabatic limit of spin-Peilerls chains [26]. As one can see
in Figure 3, the Kosterlitz-Thouless gap formula [27,26],
∆̃ ∝ (g2 − g2

c )−0.5 exp(−a/
√

g2 − g2
c ), also fits our data

and leads to a critical value of gc = 0.195t. However, such
a small value contradicts other finding of our calculations:
as discussed above, the phonon softening at the Brillouin-
zone boundary is a clear signature of the occuring phase
transition, and the smallest phonon energies should be ob-
tained for gc. This test provides clear evidence for a critical
value of gc ≈ 0.24t.

The quasi-particle energies are also directly accessi-
ble: after the renormalization equations were solved self-
consistently the electronic and phononic quasi-particle en-
ergies of the system, ε̃k and ω̃q, respectively, are given by
the limit λ → 0 of the parameters εC

α,k,λ and ωB
γ,q,λ of the

unperturbed part H0,λ of the Hamiltonian in its diagonal-
ized form (8).

In Figure 4 the renormalized one-particle energies
(which have to be interpreted as the quasi-particle ener-
gies of the full system) are shown for different values of the
EP coupling g. As one can see from the upper panel, the
electronic one-particle energies depend only slightly on g
as long as g is smaller than the critical value gc ≈ 0.24t.
If the EP coupling g is further increased a gap ∆̃ opens at
the Fermi energy so that the system becomes an insulator.
Remember that the gap ∆̃ has been used as order param-
eter to determine the critical EP coupling gc of the metal-
insulator transition (see Fig. 3). The lower panel of Fig-
ure 4 shows the results for the phononic one-particle en-
ergies ω̃q. One can see that ω̃q gains dispersion due to the
coupling g between the electronic and phononic degrees of
freedom. In particular, the phonon mode at momentum
2kF = π, i.e. at the Brillouin-zone boundary, becomes soft
if the EP coupling is increased up to gc ≈ 0.24t. However,
in contrast to the metallic solution of Section 2 ω̃q at 2kF

always remains positive though it is very small. Note that
for g values larger than gc ω̃q increases again. This phonon
softening at the phase transition has to be interpreted as
a lattice instability which leads to the formation of the
insulating Peierls state for g > gc. The phase transition is
associated with a shift of the ionic equilibrium positions.
A lattice stiffening occurs if g is further increased to values
much larger than the critical value gc ≈ 0.24t.

5 Summary

In this paper, the recently developed PRM approach has
been applied to the one-dimensional Holstein model (1) of
spinless fermions interacting with dispersion-less phonons.
In extension to our earlier work [21], here, we have im-
proved the scheme for the evaluation of expectation val-
ues, and have discussed the metal-insulator transition of
the model for different fillings of the electronic band. Fur-
thermore, for the half-filled Holstein model we have de-
rived an uniform description for the metallic as well as for
the insulating phase.
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Fig. 4. (Color online) Fermionic (upper panel) and bosonic
(lower panel) quasi-particle energies of a chain with 500 lattice
sites for different EP couplings g.

We have shown that the renormalized phonon energies
gain a momentum dependence due to the EP coupling. In
particular, for half-filling a phonon softening at 2kF ap-
pears if the EP coupling is close to the critical value of the
metal-insulator transition. Therefore, the broken symme-
try of the insulating phase strongly depends on the filling
of the electronic band. The critical value of the metal-
insulator transition also depends on the band filling, where
the insulating phase has at half-filling the highest stability.

The PRM approach of reference [21] breaks down if
the EP coupling exceeds the critical value of the metal-
insulator transition. Here, we have extended our PRM ap-
proach to enable symmetry broken insulating states. Thus,
we derived an uniform description for the metal as well
as for the insulating phase (which is restricted to the half-
filled case of the Holstein model). Here, we have used this
extended analytical framework to study the phase transi-
tion in more detail. We have determined the critical value
of the EP coupling for the metal-insulator transition. Fur-
thermore, we have shown the opening of the excitation gap
in the electronic quasi-particle energies, and the lattice
stiffening for EP couplings larger than the critical value.
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